

Does the nature of oil shocks matter?

Jérôme Creel (OFCE & ESCP Europe) Présentation au séminaire Cournot 30 janvier 2014

Elizaveta Archanskaïa^a, Jérôme Creel^{b,c,*}, Paul Hubert^a

^a OFCE—Sciences Po, France ^b OFCE, France ^c ESCP Europe, France

Motivation

 Assessing the nature of oil price shocks between 1970 & 2006

• Discussing the design of economic policies according to the nature of oil price shocks

Outline

- A brief overview of our methods, data & results
- A brief review of the literature
- Data
- Identification strategy
- Main results and their robustness checks
- Out-of-sample simulations: what has been the nature of oil shocks since 2006?
- Policy recommendations

A brief overview of our methods, data & results

- Identification strategy: very simple!
 - We draw on... an AS/AD model!
- Methods
 - Break tests à la Qu-Perron ('07), TVP analysis, cyclical correlations, VAR
- Data
 - Own measure of global economic activity for net oilconsuming countries
- Main results
 - Oil price shocks were *mainly* supply-driven between 1970
 & 1992, and *mainly* demand-driven between 1992 & 2006
 - The 2008 oil price shock was *mainly* demand-driven

A brief review of the literature

- Oil and the macroeconomy since the '70s
 - Hamilton ('83): oil shocks are a factor of US recessions between 1949 and 1972, less so after
 - 4 explanations for a more muted impact of oil on the macroeconomy
 - Non-linear reaction of macro variables to oil shocks
 - Lower energy intensity of industrialized countries
 - Changes in economic policies
 - Changes in the nature of oil shocks

A brief review of the literature (cont.)

- Changes in the nature of oil shocks
 - Purely supply shocks in the '70s and purely demand shocks afterwards?
 - Most contributions argue that oil price shocks are supply- & demand-driven
 - The supply vs. demand contributions are contradictory
 - 1973/74 oil shock: supply-driven?
 - » Kilian ('09): 15%; Baumeister & Peersman ('08): 25%; Nobili ('09): 60%
 - Oil shocks in the '70s and '80s: mainly supply-driven (Hamilton, '83, '96, '09); mainly demand-driven (Kilian, '02, '09)
 - Oil shocks in the '90s and early 2000s: mainly demand-driven (Hamilton, '09, Kilian, '08a,b,'09)

Data

- Original series: measure economic performance of *net* oil consuming countries
 - 16 countries, 61% of world oil consumption '70-'06
 - quarterly real GDP, weighted by share of oil consumption
 - 26% world production of oil in 1970/19% in 2006
- Real price of oil
 - Theoretically consistent
 - Best measure of shock's magnitude & duration

Real price of oil (US \$)

Real GDP of net oil consumers

(Percentage change, quarter-over-quarter)

Data (cont.)

Figure 2 – Different indexes of global real economic activity

Note: ACH stands for the authors' index; Kilian for Kilian's, and BP for Baumeister and Peersman's Sources: Christiane Baumeister, Lutz Kilian's personal webpage

<u>Corr. Coeffct between indexes of global real eco activity</u>: +0.62 (ACH-BP); -0.16 (ACH-Kilian); -0.01 (BP-Kilian) <u>Corr. Coeffct between the real price of oil and indexes of global real eco activity</u>: 0 (ACH

& BP), >0 (Kilian)

Identification strategy

• AS/AD model:

Market-based

- Draws on Smith ('09)
- Consistent with DSGE models with endogenous oil price formation process (Nakov & Pescatori, '10, Nakov & Nuño, '11)
 - the nature of an oil price shock can be identified by the co-movement between oil prices & output:
 - oil price and output co-movement is <u>positive</u> in the case of an endogenous <u>demand</u> shock and *negative* in the case of an *exogenous* supply shock

Main results

. . . .

2000

2005

Table 1

festing structural break in the oil prices – macroeconomy relation.				15	β_y		
Oil demand shocks $P_t = \alpha_y + \beta_y Y_{t-1}$				10	15		
Maximum number of breaks allowed ^a SupLR test: 0 vs. 1 SupSEQ test: 1 vs. 2 SupSEQ test: 2 vs. 3 Estimated break dates 90% interval confidence	4 breaks 22.42*** 22.70*** 15.69 1979Q4 1974Q4–1983Q1	1988Q3 1983Q2-1992Q1		0 1970- 1975 1980 1985 1990 1985 2000 2006 -5 -10 -15 -20	10 5 0 1970 1975 1980 1995 -5		
OLS estimates	α	β_y	Sigma resid.	Fig. 4. TVP estimation (with one SE bands). Demand-driven process: $P_t = \alpha_{yt} + \beta_{yt} \cdot Y_{t-1}$.			
1st regime 2nd regime 3rd regime Oil supply shocks $Y_t = \alpha_p + \beta_p P_{t-1}$	5.48 - 3.19 - 8.83**	0.46 0.06 12.67***	461 94 188	<i>ap</i>	β_p		
Maximum number of breaks allowed ^a SupLR test: 0 vs. 1 SupSEQ test: 1 vs. 2 SupSEQ test: 2 vs. 3 Estimated break dates 90% interval confidence	4 breaks 39.75*** 18.39** 20.04 1987Q3 1984Q3-1987Q4	1993Q3 1993Q2-1994Q1		0.6 0.4 0.2 0.0 1970 1975 1980 1985 1990 1985 2000 2005 0.2 0.4			
OLS estimates	α	$\beta_{\rm P}$	Sigma resid.	rig. 5. TVP estimation (with one se bands). Supply-univen process: $r_t = a_{pt} + p_{pt}$, r_{t-1} .		
1st regime 2nd regime 3rd regime	0.83*** 0.79*** 0.92***	- 0.01 - 0.01**** 0.01*	0.53 0.03 0.19	_			

^a Given the minimal length criteria of a regime (set at 20% of the total length of the sample) and the location of the breaks from the global optimization with 3 breaks there is no more place to insert additional breaks that satisfy the minimal length requirement. Numbers in parentheses are standard errors.

* Means significant at 10%. The pattern is similar with more lags.

** Means significant at 5%. The pattern is similar with more lags.

*** Means significant at 1%. The pattern is similar with more lags.

Main results (cont.)

Table 2

Cyclical correlations of crude oil prices with GDP.

	j=-4	j=-3	j=-2	j=-1	j =0	j =1	j =2	j =3	j=4
World GDP measur	e 1: net oil cons	sumers							
Total sample	0.2447**	0.1763*	0.1084	0.0421	-0.0865	-0.1898*	-0.2526**	-0.3131**	-0.3444**
1970Q3-1992Q3	0.3245**	0.1679	-0.0012	-0.1337	-0.3117**	-0.4357**	-0.4801**	-0.4936**	-0.4737**
1992Q4-2006Q4	0.0268	0.2199	0.4458**	0.5713**	0.5758**	0.5285**	0.4068**	0.2009	0.024
World GDP measur	e 2: gross oil co	nsumers							
Total sample	0.2257**	0.1731*	0.123	0.0721	-0.0436	-0.1481	-0.2166*	-0.2832**	-0.3267**
197003-199203	0.3242**	0.1733	0.0132	-0.1121	-0.2832**	-0.4081**	-0.4532**	-0.4704**	-0.4576**
1992Q4 2006Q4	-0.0417	0,1886	0.4479**	0.6066**	0.6384**	0.5887**	0.4504**	0.2368	0.0379

* Means significant at 5%.

** Means significant at 1%.

Total sample: no instantaneous clear-cut result

1st sample: the cycle of oil prices leads countercyclically GDP cycle \implies supply shock 2nd sample: procyclicality \implies demand shock

At maximum co-movement,

1st sample: 1-point increase in oil price leads to -3.5% of GDP

2nd sample: 1% GDP increase leads to +13.7% increase in the price of oil

• Main results (cont.)

Robustness checks

- Use of a global economic activity for gross oil consuming countries
 - 20 countries, 67% of world oil consumption, 41% of world oil production in 1970-2006
- Use of different noise-to-variance ratios in TVP
- +/- 4 quarters' change in sample partitioning
- Use of Baxter-King filter in cyclical correlations
- Use of more lags in VARs

Out-of-sample: 2008 oil price shock

- Use of predicted variations based on VAR (estimated with actual data between 2007 & 2009);
- Use of predicted variations based on estimated coefficient of 1st, then 2nd sample VAR

Fig. 10. Data. Source: BP Statistical Review, Datastream, authors' calculations.

What would the ID strategy tell us about the nature of recent oil movements?

Correlation between world GDP and the price of oil = 0.23 Shocks to the price of oil have been *mainly* demand-driven. QED.

From global to national (US)

Source: Archanskaïa et al., Revue économique, '10

Conclusions

- The nature of oil price shocks has changed
- Recent muted impact of oil price shocks on global growth (Blanchard & Gali, '10, Kilian & Lewis, '11) is consistent with concomitant change in oil–macroeconomy relationship
- Supply-driven shocks are abrupt; demanddriven (endogenous) shocks are gradual: the nature of oil shocks matters!

Policy recommendations

	Nature of oil price shocks				
	Mainly supply- driven	supply- Mainly demand driven			
		Co-movement bi globa	Co-movement btw domestic and global GDP		
		>0	<0		
Policy response	Trade-off	No trade-off	Trade-off		

- Requirements: good knowledge of the nature of oil price shocks AND good knowledge of the domestic contribution to a shock
- Information set of policymakers should thus include:
 - Co-movement between oil price and global GDP
 - Co-movement between domestic and global GDP